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a b s t r a c t

The effects of axial heat conduction in the solid walls of microchannels of circular cross-sections are ana-
lyzed here. A systematic approach is adopted, with the aim of pointing out the influence of geometrical
parameters and of solid wall thermal conductivity on microchannel heat transfer. The reliability of a com-
monly adopted criterium, based on the so-called axial conduction number, to assess the relevance of axial
heat conduction is also discussed. Numerical simulations concern the simultaneously developing laminar
flow of a constant property fluid in microchannels of different length, wall thickness and wall material,
heated with a uniform heat flux at the outer surface, for different values of the Reynolds number. More-
over, since often in experimental tests the two end sections of the microchannel wall are not perfectly
insulated, the effects of heat losses through these sections are also considered. A hybrid finite element
procedure, which implies the step-by-step solution of the parabolized momentum equations in the fluid
domain, followed by the solution of the energy equation in the entire domain, corresponding to both the
solid and the fluid parts, is used for the numerical simulations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In forced convection heat transfer problems involving channels
of conventional size, the axial heat conduction in the duct walls
can, in general, be neglected because the wall thickness is usually
very small compared to the hydraulic diameter. On the contrary, in
most microscale thermal devices, the area of the transverse section
of the solid material perpendicular to the flow direction is compa-
rable to the area of the channel cross-section. As a consequence,
the effects of heat conduction in the solid walls cannot often be
disregarded. For instance, it is well known that, if in the calculation
of convective heat transfer coefficients from experimental data the
effects of these conjugate heat transfer phenomena are neglected,
the corresponding Nusselt numbers are, generally, underestimated
(Liu et al., 2007; Celata et al., 2006; Morini, 2005). In particular, ax-
ial wall heat conduction represents one of the factors that can
cause the discrepancies, often reported in scientific literature, be-
tween microchannel heat transfer data and predictions of standard
correlations valid for conventional size channels (Herwig and
Hausner, 2003).

Numerical simulations can give a useful support to experimen-
tal work since they allow the analysis of fluid flow and heat trans-
fer phenomena in idealized conditions, where only few selected
effects are taken into account. However, because of the enormous
difference between the transverse and the longitudinal scales of
the computational domain, the solution of the three-dimensional
ll rights reserved.

: +39 0432 558027.
.

elliptic form of the Navier–Stokes equations in the portion of the
domain corresponding to the flow passage requires a significant
CPU time. Therefore, several researchers use simplified approaches
where, for instance, a fully developed velocity field or a constant
convective heat transfer coefficient are assumed in the whole
microchannel (Maranzana et al., 2004; Ryu et al., 2002), but, of
course, this does not allow the entrance effects to be taken into ac-
count. On the other hand, in many microchannel flows of practical
interest, velocity and temperature fields develop simultaneously,
resulting in overlapping hydrodynamic and thermal entrance re-
gions. This occurs when heat transfer begins at the duct inlet,
where the velocity boundary layer also starts developing. In such
a situation, entrance effects on fluid flow and forced convection
heat transfer cannot be neglected if, as it quite often happens in
microchannel laminar flows, the total length of the duct is compa-
rable with that of the entrance region.

In this paper, as an alternative to massive CFD, a hybrid tech-
nique, which has the advantage of accounting for all the three-
dimensional features of the flow field, but with a limited computa-
tional effort, is proposed for the solution of conjugate convection-
conduction heat transfer problems in microchannels. A very effi-
cient finite element procedure is first employed for the step-by-
step solution of the parabolised momentum equations in a domain
corresponding to the cross-section of the duct, discretized using a
sufficiently fine grid (Nonino et al., 1988, 2006). Provided that the
axial diffusion of momentum can be neglected, such an approach is
very advantageous with respect to the one based on the steady-
state solution of the elliptic form of the Navier–Stokes equations
in a three-dimensional domain corresponding to the whole duct
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Nomenclature

c specific heat ðJ kg�1 K�1Þ
D diameter (m)
h convective heat transfer coefficient ðW m�2 K�1Þ
k thermal conductivity ðW m�1 K�1Þ
M axial conduction number, Eq. (10)
L length of the microchannel (m)
_m mass flow rate ðkg s�1Þ

Nu Nusselt number ð¼ hiDi=kf Þ
Nue end section Nusselt number ð¼ haDi=kf Þ
n outward normal to the boundary (m)
Pe Péclet number ð¼ Re PrÞ
Pr Prandtl number ð¼ cf lf =kf Þ
p deviation from the hydrostatic pressure (Pa)
q heat transfer rate (W)
q0 heat transfer rate per unit length ðWm�1Þ
q00 heat flux ðWm�2Þ
Re Reynolds number ð¼ qf uinDi=lf Þ
r; x cylindrical coordinates (m)
T dimensionless temperature ð¼ pkf ðt � tinÞ=q0oÞ
t temperature (�C)
u;v velocity components in x and r directions ðms�1Þ

w wall thickness (m)
X� dimensionless axial coordinate ð¼ x=DiPeÞ

Greek letters
/ correction velocity potential ðm2 s�1Þ
l dynamic viscosity ðkg m�1 s�1Þ
q density ðkg m�3Þ

Subscripts and superscripts
a ambient
b bulk
e microchannel end section
f fluid
i inner, fluid–solid interface
in inlet
o outer, outer surface
out outlet
s solid
w wall
0 correction value
� average value
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because of the high value of the ratio between the total length and
the hydraulic diameter. Then, the three-dimensional hydrodynam-
ically developing velocity field thus determined is used in the finite
element solution of the steady-state energy equation in the entire
domain, corresponding to both the solid and the fluid parts. Before
solving the energy equation, the fulfillment of the discrete mass
conservation constraint for the velocity field mapped onto the
new grid is obtained by solving a Poisson equation for a correction
velocity potential which allows the calculation of appropriate
velocity corrections. This technique is standard in the context of
fractional step methods, often used in the solution of the continu-
ity and the Navier–Stokes equations (Patankar, 1980; Gresho,
1990; Nonino, 2003). While the idea of first solving the Navier–
Stokes equations only in the fluid domain and then the energy
equation in both the fluid and solid domains is not new (Fakheri
and Al-Bakhit, 2005; Al-Bakhit and Fakheri, 2005, 2006; Lelea
et al., 2004), it must be pointed out that the mapping adopted here
of the velocity field onto grids with different nodal densities allows
a greater flexibility in the meshing of complex geometries.

As a first application of this procedure, the axial heat conduc-
tion in the solid walls of microchannels of circular cross-section
is analyzed here, since this simple geometry is often used in exper-
imental studies (Liu et al., 2007; Celata et al., 2006; Lelea et al.,
2004; Li et al., 2007). Of course, this problem has already been con-
sidered in the past (Mori et al., 1974), but a more systematic ap-
proach is adopted in this paper, with the aim of pointing out the
influence of geometrical parameters and solid wall thermal con-
ductivity on microchannel heat transfer and of verifying the reli-
ability of a commonly adopted criterium, based on the value of
the so-called axial conduction number, to assess the relevance of
axial wall heat conduction (Maranzana et al., 2004; Hetsroni
et al., 2005; Celata et al., 2006; Morini, 2005; Gamrat et al.,
2005; Li et al., 2007). Numerical simulations concern the simulta-
neously developing laminar flow of a constant property fluid in
microchannels of different length, wall thickness and wall mate-
rial, heated with a uniform heat flux at the outer surface, for differ-
ent values of the Reynolds number. Moreover, since in
experimental tests the two ends of the microchannel wall are often
not perfectly insulated (Tiselj et al., 2004), the effects of heat con-
duction through the microchannel walls at both end sections are
also considered.

2. Mathematical model

The hybrid technique described below can be employed, as an
alternative to massive CFD, for the solution of steady-state conju-
gate convection-conduction heat transfer problems in microchan-
nels with constant cross-sections and thick walls, provided that
reference is made to a constant property fluid and that axial diffu-
sion of momentum can be neglected (parabolic flow), which is a
reasonable assumption when the Reynolds number is equal to or
larger than 50 (Shah and London, 1978). In these hypotheses,
microchannel flows are governed by the continuity and the para-
bolized form of the Navier–Stokes equations, which, with reference
to the axisymmetric geometries considered in this paper, can be
written as
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According to the assumption of a parabolic flow, all the derivatives
in the axial direction are neglected in the diffusive terms of Eqs. (2)
and (3) (Hirsh, 1988). In the above equations, x and r are the axial
and radial coordinates, while u and v represent the axial and the ra-
dial velocity components. Finally, p is the deviation from the hydro-
static pressure, p is its average value over the cross-section, while qf

and lf represent density and dynamic viscosity of the fluid, respec-
tively. The solution domain can be bounded by rigid walls or by the
symmetry axis. On rigid boundaries the no-slip conditions, that is,
u ¼ v ¼ 0, are imposed. Instead, symmetry conditions at the sym-
metry axis are @u=@r ¼ 0 and v ¼ 0. The model equations are solved
using a finite element procedure based on a segregated approach
which implies the sequential solution of momentum equations on
a one-dimensional domain corresponding to the cross-section of
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the channel. A marching method is then adopted to move forward
in the axial direction (Nonino et al., 1988). The pressure–velocity
coupling is dealt with using an improved projection algorithm al-
ready employed for the solution of the Navier–Stokes equations in
their elliptic form (Nonino, 2003).

The velocity field, which can be determined using a very fine
space resolution in the axial direction, is then mapped onto a
two-dimensional grid used to discretize the complete domain of
interest, corresponding to both the fluid in the microchannel and
its solid walls, and to solve the elliptic form of the steady-state en-
ergy equation
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where t is temperature and q; c and k represent density, specific
heat and thermal conductivity, which are equal to qf ; cf and kf in
the fluid and to qs; cs and ks in the solid. On external solid bound-
aries, appropriate boundary conditions are of the Neumann
q00 ¼ q00w or of the convective q00 ¼ haðt � taÞ type, where ha is the
external convective heat transfer coefficient and ta is the ambient
fluid temperature. Symmetry conditions are @t=@r ¼ 0. Finally,
Dirichlet t ¼ tin and Neumann @t=@x ¼ 0 conditions are imposed
on inflow and outflow boundaries, respectively.

As the velocity field is determined before the conjugate thermal
problem is solved, the mesh employed for the solution of the en-
ergy equation in the fluid part of the domain can be significantly
coarser than the mesh that would be required if the Navier–Stokes
equations also had to be solved in the same domain in their elliptic
form. This, of course, allows significant savings in computer time,
thus making systematic studies and optimization procedures eas-
ier. However, it must be pointed out that the velocity field mapped
onto a coarser grid, whose components can be indicated as u� and
v�, in general, does not locally satisfy the discretized continuity
equation. Therefore, before solving the energy equation, the appro-
priate velocity corrections u0 and v 0 must be calculated to obtain a
corrected velocity field u;v

u ¼ u� þ u0; v ¼ v� þ v 0 ð5Þ

which satisfies the discretized form of the mass conservation con-
straint. To this purpose, a technique is employed here, which is
standard in the context of fractional step methods, often used to
solve the continuity and the Navier–Stokes equations (Patankar,
1980; Gresho, 1990; Nonino, 2003). This procedure implies the
solution of the discretized form of the Poisson equation for the
velocity correction potential /
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subjected to the boundary conditions @/=@n ¼ 0 on the whole
boundary. In addition, / ¼ 0 must be specified in an arbitrary point
of the domain. Then, the nodal values of the velocity corrections u0

and v 0 are obtained by solving the discretized forms of the following
equations

u0 ¼ @/
@x

; v 0 ¼ @/
@r

ð7Þ
Fig. 1. Computational domain (not to scale) and thermal boundary conditions.
3. Results and discussion

A parametric study is carried out on the effects of axial heat
conduction on forced convection heat transfer in flows through cir-
cular microchannels. Three microchannel lengths L are considered,
namely 25Di;50Di and 100Di, where Di is the internal diameter of
the microchannel wall, together with three values of the outer
diameter Do, namely 2Di;3Di and 5Di, corresponding to wall thick-
nesses w equal to 0:5Di;Di and 2Di, respectively. The working fluid
is assumed to have constant thermophysical properties in the tem-
perature range considered and a Prandtl number Pr ¼ 5. Three val-
ues of the Reynolds number Re ¼ qf uinDi=lf , where uin is the
uniform inlet velocity, are considered, namely, 50, 100 and 200, to-
gether with two values of the ratio of the solid wall to fluid thermal
conductivities, corresponding to ks=kf ¼ 25 and 250. These two val-
ues have been chosen because they are representative of a condi-
tion where, if the fluid is water, the microchannel wall is made
of stainless steel ðks=kf ¼ 25Þ or of silicon ðks=kf ¼ 250Þ.

The external microchannel wall is heated with an axially con-
stant heat flow rate per unit length q0o which, to allow comparisons
among different test cases, is assumed to be the same for all the
geometries. This implies that the actual uniform heat flux
q00o ¼ q0o=ðpDoÞ applied on the external surface depends on the outer
diameter of the microchannel. To show the effects of possible heat
losses through both end sections of the microchannel, convective
boundary conditions are applied on these surfaces and equivalent
convective heat transfer coefficients ha are assumed such that the
values of the end section Nusselt number are Nue ¼ haDi=kf ¼ 0
(adiabatic wall), 1 and 10. The end heat losses at the upstream
and downstream end sections are assumed to take place towards
environments whose temperatures ta are equal to the inlet and
outlet mean bulk temperatures of the fluid, respectively, as it
would happen if there were entrance and exit manifolds. Accord-
ingly, the temperatures ta ¼ tb;in ¼ tin and ta ¼ tb;out are assumed
at the upstream and downstream sides, where tin is the uniform in-
let temperature of the fluid and tb;out is the mean bulk temperature
at the outlet of the microchannel. Since, because of end heat losses,
tb;out cannot be estimated ‘‘a priori”, the solution must be obtained
by an iterative procedure where, at each step, an updated value of
tb;out is assumed until convergence is reached. A sketch of the com-
putational domain, showing the imposed thermal boundary condi-
tions, is reported in Fig. 1.

As stated above, two different domains are considered in the
solution for velocity and thermal fields. The one-dimensional axi-
symmetric domain where the parabolized Navier–Stokes equa-
tions are integrated is discretized using 80 linear elements, with
sizes gradually increasing with increasing distance from the walls,
while the two-dimensional axisymmetric domains where the en-
ergy equation is integrated are discretized using non-uniform grids
of 4-node bilinear elements with 60 subdivisions (30 of which in
the fluid) in the radial direction and between 150 (for L ¼ 25Di)
and 384 (for L ¼ 100Di) subdivisions in the axial direction, with a
total number of nodes ranging from 9211 to 23485. Preliminary
tests have shown that these meshes are fine enough to yield grid
independent results.

The computed results used in the present analysis include axial
distributions of the dimensionless bulk temperature Tb, of the in-
ner wall dimensionless temperature Ti, where the dimensionless
temperature is defined as T ¼ pkf ðt � tinÞ=q0o, and of the local Nus-
selt number

Nu ¼ hiDi

kf
¼ q00i Di

ðti � tbÞkf
ð8Þ

where hi and q00i are the local convective heat transfer coefficient and
heat flux at the inner surface of the microchannel and ti and tb are
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the corresponding wall and bulk temperatures. The length averaged
Nusselt number

Nu ¼ 1
L

Z L

0
Nu dx ð9Þ

is also computed.
The important components of the procedure illustrated above

have already been extensively validated in the past. In particular,
the finite element code employed for the solution of the parabol-
ized Navier–Stokes equations has been thoroughly tested and val-
idated through comparisons of calculated results with available
literature data (Nonino et al., 1988, 2006). Instead, the code used
for the solution of the energy equation in two- and three-dimen-
sional domains is part of a procedure, described by Nonino and Co-
mini (1997), which also solves the elliptic form of the Navier–
Stokes equations and whose validity has been proved by Nonino
and Croce (1997). Finally, the complete procedure described in this
paper has been validated by comparing, for selected microchan-
nels, the calculated temperature distributions with those obtained
by solving, on the same grid, the full set of Navier–Stokes and en-
ergy equations in their elliptic form by means of a reliable and
thoroughly tested finite element code (Nonino and Comini, 1997;
Nonino and Croce, 1997). As an example, comparisons of the axial
distributions of the dimensionless wall and bulk temperatures and
of the local Nusselt numbers obtained with the hybrid and with the
fully elliptic procedures are shown in Fig. 2 for the case
Re ¼ 200; L=Di ¼ 25;Do=Di ¼ 3; ks=kf ¼ 25 and Nue ¼ 0. It must be
noticed that this probably represents one of the most critical test
cases, among those considered here, since the hydrodynamic en-
trance region extends for a significant part of the microchannel
due to the combination of a high Reynolds number and a short duct
Tb

Ti

X *

X *

hybrid

elliptic

hybrid

elliptic

T

(b)

(a)

Nu

4

6

8

10

12

0  0.005  0.01  0.015  0.02  0.025

0  0.005  0.01  0.015  0.02  0.025
0

0.1

0.2

0.3

Fig. 2. Comparisons of results yielded by the hybrid and the fully elliptic
procedures for Re ¼ 200; L=Di ¼ 25;Do=Di ¼ 3; ks=kf ¼ 25 and Nue ¼ 0: (a) axial
distributions of the dimensionless wall temperature Ti and bulk temperature Tb; (b)
axial distributions of the local Nusselt number Nu.
length. The agreement of the results yielded by the two procedures
is excellent and, actually, the two curves for Tb are indistinguish-
able in Fig. 2. The same type of agreement has been found in all
the other tests not reported here for the sake of brevity.

A total of 162 computer simulations have been carried out to al-
low for all possible combinations of the values of the above param-
eters. Moreover, additional simulations concerning the
corresponding test cases with zero wall thickness (w=Di ¼ 0, i.e.,
Do=Di ¼ 1) have also been carried out for comparison purposes,
since this case corresponds to the classical H thermal boundary
condition (Shah and London, 1978). To keep the size of the paper
within reasonable limit, the effects of axial heat conduction on lo-
cal values of relevant parameters (Nu, Ti and Tb) are shown here
only with reference to some of the tests, while all the results are
used to illustrate its effects on global parameters such as Nu.

3.1. Influence of the wall thermal conductivity

It is well known (Maranzana et al., 2004; Hetsroni et al., 2005; Li
et al., 2007) that the effects of axial heat conduction are more rel-
evant in case of short ducts, thick walls and low Reynolds numbers.
Therefore the influence of the wall thermal conductivity is shown
here with reference to the case L=Di ¼ 25;Do=Di ¼ 5, Re ¼ 50 and
Nue ¼ 0. In Fig. 3, axial distributions of the local Nusselt number
are reported for ks=kf ¼ 25 and 250, together with that pertaining
to the microchannel with Do=Di ¼ 1, shown as a reference. The
dimensionless axial coordinate is defined as X� ¼ x=ðDiPeÞ (Shah
and London, 1978). A logarithmic scale is used for X� in Fig. 3a to
show the influence of the wall thermal conductivity in the part
of the microchannel near the inlet, while a linear scale is used in
Fig. 3b to better illustrate its influence in the last part. It is apparent
that axial wall heat conduction has the generalized effect of reduc-
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ing the local Nusselt number with respect to the reference value
corresponding to Do=Di ¼ 1 and that larger reductions are found
for larger values of ks=kf . Moreover, the decrease of the Nusselt
number is more significant near the entrance and exit of the micro-
channel than in the intermediate part. Similar plots, not reported
here, concerning smaller values of Do=Di show a similar behaviour.
However, while the corresponding values of Nu for small X� are
nearly the same as those shown in Fig. 3a, the values of Nu for lar-
ger X� are not as small as the ones reported in Fig. 3b. The axial dis-
tributions of the dimensionless wall and bulk temperatures
corresponding to the cases illustrated in Fig. 3 are reported in
Fig. 4. The influence of the wall thermal conductivity is evident.
In particular, an increase of the ratio ks=kf leads to a more uniform
streamwise temperature distribution at the fluid–solid interface,
which, for very high values of ks=kf , would approach that corre-
sponding to the classical T boundary condition (Shah and London,
1978).

3.2. Influence of the wall thickness

The influence of the wall thickness can also be illustrated with
reference to the case L=Di ¼ 25;Re ¼ 50 and Nue ¼ 0. The axial dis-
tribution of the local Nusselt number is reported in Fig. 5 for
ks=kf ¼ 250 and different values of Do=Di. Again, a logarithmic scale
for X� is used in Fig. 5a to show the influence of the wall thickness
in the part of the microchannel near the entrance, while a linear
scale is used in Fig. 5b to better illustrate its influence in the last
part. A comparison of Figs. 3b and 5b shows that an increase of
the wall thermal conductivity has an effect on the axial distribu-
tion of the local Nusselt number which, along the most part of
the microchannel, is similar to that of an increase of the wall thick-
ness. In fact, lower values of Nu are found for increasing values of
both wall thermal conductivity and wall thickness. However, in
Fig. 5a it is apparent that for small values of X�, with a given wall
thermal conductivity, the values of the local Nusselt number are
nearly independent of the wall thickness (as long as this does
not tend to zero), while according to Fig. 3a, with a given wall
thickness, the dependence of Nu on wall thermal conductivity re-
mains significant even very near the microchannel inlet. Results
of other test cases (not reported here), carried out using other val-
ues of the ratio ks=kf , show qualitatively similar behaviours.

3.3. Entrance effects

The combination of channel entrance and axial heat conduction
effects is best illustrated with reference to the test cases with
L=Di ¼ 100; Nue ¼ 0; ks=kf ¼ 250 and different values of Do=Di
and Re. With reference to these combinations of parameters, axial
distributions of the local Nusselt number are reported in Fig. 6a for
Re ¼ 50, i.e., Pe ¼ 250, and Fig. 6b for Re ¼ 200, i.e., Pe ¼ 1000.
Fig. 6a demonstrates that, contrary to the common experience,
when the entrance length is rather small compared to the total
length of the microchannel (low Reynolds and Péclet numbers)
and axial heat conduction is significant, the local Nusselt number
does not monotonically decrease from inlet to outlet, but presents
a local minimum in the first part of the microchannel. On the other
hand, such minima also appear in some of the local Nusselt num-
ber axial distributions obtained numerically by Lelea (2007) and
experimentally by Lelea et al. (2004). On the contrary, with higher
values of the Reynolds and Péclet numbers, that is, with larger en-
trance lengths, more usual trends of monotonically decreasing lo-
cal Nusselt numbers in the axial direction are found, as shown in
Fig. 6b. Intermediate behaviours are found for L=Di ¼ 50 or
Re ¼ 100 (plots not reported here). If ks=kf is equal to 25, instead,
no minima in local Nusselt number axial distributions are found
for any of the Reynolds numbers or of the ratios Do=Di considered.

3.4. Effects of end losses

The effects on the local Nusselt number of heat losses at micro-
channel ends, combined with those of the axial heat conduction in
the microchannel walls, are rather complex. Some examples are
shown in Fig. 7, where axial distributions of the local Nusselt num-
ber are reported for the cases with L=Di ¼ 25;Do=Di ¼ 2;Re ¼ 50
and the values of ks=kf and of the end section Nusselt number con-
sidered, and in Fig. 8, where similar plots are reported, but with
reference to Do=Di ¼ 5. As can be seen in Figs. 7a and 8a, with
ks=kf ¼ 25 the main effect of the end heat losses is represented
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by an increase of the local Nusselt number with respect to the case
with adiabatic ends ðNue ¼ 0Þ in the first part of the microchannel
and in a reduction near the microchannel exit. A similar effect, but
not as evident, can also be observed in Figs. 7b and 8b for
ks=kf ¼ 250. To allow a better interpretation of the results shown
in Figs. 7 and 8, the values (in percentage) of the ratio qe=qo of
the total microchannel end heat losses qe over the total heat flow
rates at the external microchannel surfaces qo ¼ q0oL are reported
in Table 1 for the test cases with Nue > 0. Finally, to give more in-
sight into the complex heat transfer effects related to the heat
losses through the end sections of microchannel walls, the axial
distributions of the dimensionless wall and bulk temperatures cor-
responding to the cases illustrated in Figs. 7 and 8 are reported in
Figs. 9 and 10.

3.5. Characterization of axial heat conduction effects

The so-called axial conduction number M, defined as the ratio of
the nominal axial heat transfer rate by conduction in the wall
qcond== to the heat transfer rate by convection in the fluid qconv ,
Table 1
Microchannel end heat losses for the test cases with Nue > 0 referred to in Figs. 7 and
8.

Do=Di ks=kf Nue qe=qo (%)

2 25 1 1.0
2 25 10 6.6
2 250 1 1.2
2 250 10 10.1
5 25 1 9.1
5 25 10 34.2
5 250 1 10.9
5 250 10 51.2
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is often used to express the relative importance of the axial heat
conduction in the tube wall with respect to the convective heat
transfer in the fluid (Maranzana et al., 2004; Hetsroni et al., 2005;
Celata et al., 2006; Morini, 2005; Gamrat et al., 2005; Li et al.,
2007). With the values of the parameters adopted in this study, M
varies in the range from 0.00075 to 0.96, thus including the critical
lower limits of about 0.01 or 0.02, commonly accepted for axial heat
conduction to be significant (Hetsroni et al., 2005; Celata et al.,
2006; Morini, 2005).

Fig. 11 shows a plot of the values of the ratio of the length aver-
aged Nusselt numbers Nu, pertaining to all the test cases consid-
ered, and Nu0, pertaining to the corresponding microchannels
with wall thickness equal to zero ðDo=Di ¼ 1Þ, as a function of the
axial conduction parameter M. Different symbols are used to iden-
tify the results pertaining to different end section Nusselt numbers
at the microchannel end sections. It clearly appears that, as already
observed, the general effect of the axial heat conduction is a reduc-
tion of the average Nusselt number with respect to that corre-
sponding to the classical H boundary condition (Shah and
London, 1978) and that this reduction is smaller when there are
heat losses at the microchannel ends ðNue > 0Þ. It is also evident
that, in general, the larger the value of M is, the larger the axial heat
conduction effects are. However, it must also be noticed that the
points in Fig. 11 tend to form a cloud rather than a curve and that
the reduction of Nu with respect to Nu0 can be larger than 5% even
for values of M lower than the limits indicated in the literature for
axial heat conduction to be significant, i.e., 0.01 according to Hets-
roni et al. (2005) and Celata et al. (2006) or 0.02 according to
Morini (2005). All this confirms that, as already observed by Li
et al. (2007), ‘‘M is not the only criterion for judging whether the
axial heat conduction can be neglected”.

4. Conclusions

The effects of axial heat conduction in the solid walls of micro-
channels of circular cross-sections have been analyzed with refer-
ence to the simultaneously developing flow of a constant property
fluid in microchannels of different length, wall thickness and wall
material, heated with a uniform heat flux at the outer surface, for
different values of the Reynolds number. A hybrid finite element
procedure, which implies the step-by-step solution of the parabol-
ized momentum equations in the fluid domain, followed by the
solution of the energy equation in the entire domain, correspond-
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ing to both the solid and the fluid parts, has been used for the
numerical simulations.

The influences of wall thermal conductivity, wall thickness, en-
trance effects and heat losses through the end sections of micro-
channel walls have been investigated and the reliability of a
commonly used criterion, based on the so-called axial conduction
number, for judging whether the axial heat conduction can be ne-
glected has been discussed.
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